熱がダメなら光当てれば?Lugdunomycinの全合成

2025.06.28 From Chem-Station By 山口 研究室

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベンゾフランが生成し、鍵となるDiels–Alder反応が室温付近で進行した。

 

紫外光を利用したLugdunomycinの全合成

Lugdunomycin (1)は、2019年にライデン大学のvan Wezelらによって単離されたアンギュサイクリン系抗生物質である[1,2]1の構造的特徴として、スピロ中心の第四級炭素を含む4つの連続した不斉炭素をもつ特徴的な6-6-5-6-6-5-5縮環骨格が挙げられる。1は、iso-maleimycin (5)とElmonin (4)から生じるイソベンゾフラン6とのDiels–Alder反応によりC環の構築を伴いながら特徴的な7環性骨格が形成されることで生合成されると推定されている。この仮説検証のために、van Wezelらはフローニンゲン大学のMinnaardらと共同で、合成化学的アプローチにより1の生合成経路の検証に取り組んだ (図1B)[3]。すなわち、推定前駆体4をxylene中で加熱すると6への異性化が進行し、これが5とのDiels–Alder反応を起こすことで1が得られると期待された。しかしながら、実際には1ではなく、そのC9位の立体異性体である9-epi-Lugdunomycin (9-epi-1)が主に得られた。この結果は、56に対して立体障害の少ないback face側から接近したためだと考えられる。以上の結果より、加熱条件下でのイソベンゾフラン形成を経る手法では、1の合成が困難であると示唆された。

 

今回、南華大学のHuangらは室温付近における紫外光照射を活用したイソベンゾフラン6の生成法を見いだし、1を優先的に与えるDiels–Alder反応を報告した(図1C)。具体的には、著者らは、Ⅰ) 1がラセミ体として単離された点、およびⅡ) actinaphthoran A, B (2, 3)が1と共に単離された点に着目し、1は酵素を介さない光を駆動力とした3の環化異性化反応によりイソベンゾフラン6が生成することで生合成されていると仮定した。すなわち、3へ紫外光を照射するとカルボニル基のn–p*遷移を経たスピロケタール化反応が進行し、4が生成される。再度の紫外光照射により、C–O結合の均等開裂と項間交差により双性イオン中間体が生成し、続く1,7-水素移動により6が生成すると考えた。

図1. (A) Lugdunomycin (B) 熱的条件下でのDiels–Alder反応 (C) 光照射によるイソベンゾフランの発生

 

 

“Total Synthesis of Lugdunomycin via Sequential Photoinduced Spiroketalization and Isobenzofuran Diels–Alder Reactions”

Zhu, L.; Huang, J. Angew. Chem., Int. Ed. 2025, e202422615

DOI: 10.1002/anie.202422615

論文著者の紹介

研究者:Jun Huang

研究者の経歴:

2015                         Ph.D., Peking University, China (Prof. Zhen Yang)

2015–2016            Postdoc, State University of New York at Albany, USA (Assistant Prof. Zhang Wang)

2016–                     Professor, University of South China, China

研究内容:複雑な天然物の全合成

論文の概要

1の合成経路を図2Aに示した。著者らは、クロトン酸エチル (7)とグリニャール試薬8から出発し、11工程で3を合成した。3に紫外光を照射することで、カルボニル基のn–p*遷移を起点とするスピロケタール化が進行し、4を得た[4]。さらに4に再度紫外光を照射するとイソベンゾフラン6が生じ、5とのDiels–Alder反応により、単一のジアステレオマーとして9が生成した。最後にシリカゲル処理を施すと10を経由したスピロ環構築が進行し、1が優先して得られた (1:9-epi-1 = 2:1)。

 

著者らは光駆動イソベンゾフラン生成機構についてDFT計算を行なった (図2B)。まず14に紫外光を当てると三重項励起状態34を経て、C–O結合の開裂が起こる。開裂する結合の位置によりTS1TS2の二通りの経路が考えられるが、エネルギー的により安定なTS1を経由し、Int1を与えると示唆された。その後の1,7-水素移動については、極性機構 (TS3)とラジカル機構 (TS4)を比較した結果、TS3の方が低エネルギーであり、Int1は項間交差を経て双性イオンInt3となり、極性機構で1,7-水素移動が起こると推定された。

 

また、Diels–Alder反応の遷移状態についてDFT計算を行った結果、望む1と同様の立体化学を与えるexo-cis型が最も低エネルギーであることが明らかになった (図2C)。計算によって得られた遷移状態モデル間のエネルギー差は、56の間の水素結合の直線性が失われることによる遷移状態の歪みや、5のヒドロキシ基と6のフェニル基との間の立体反発により生じていると考えられた。

図2. (A) 1の合成 (B) 光駆動イソベンゾフラン形成における自由エネルギーの計算値 (C) Diels–Alder反応の遷移状態エネルギー (kcal/mol)

 

以上、著者らは光励起を利用したイソベンゾフランの生成を鍵とするLugdunomycinの全合成を報告した。光を活用することで加熱を回避し、Diels–Alder反応の立体化学を制御した本戦略は、注目に値する革新的アプローチである。

参考文献

  1. Vysloužilová, D.; Kováč, O. The Chemistry of Angucyclines. ChemPlusChem 2024, 89, e202400307. DOI: 10.1002/cplu.202400307
  2. Wu, C.; Heul, H. U. van der; Melnik, A. V.; Lübben, J.; Dorrestein, P. C.; Minnaard, A. J.; Choi, Y. H.; van Wezel, G. P. Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture. Angew. Chem., Int. Ed. 2019, 58, 2809–2814. DOI: 10.1002/anie.201814581
  3. Uiterweerd, M. T.; Santiago, I. N.; Cunha, A. V.; Havenith, R. W. A.; Du, C.; Zhang, L.; Heul, H. U. van der; Elsayed, S. S.; Minnaard, A. J.; van Wezel, G. P. Biomimetic Total Synthesis and Paired Omics Identify an Intermolecular Diels–Alder Reaction as the Key Step in Lugdunomycin Biosynthesis. J. Am. Chem. Soc. 2025, 147, 13764–13774. DOI: 10.1021/jacs.5c01883 ※なお、本論文において著者らは対応するChemrxivを参照している (DOI: 10.26434/chemrxiv-2024-d4qs8)
  4. Wakita, F.; Ando, Y.; Ohmori, K.; Suzuki, K. Model Reactions for the Enantioselective Synthesis of γ‑Rubromycin: Stereospecific Intramolecular Photoredox Cyclization of an Ortho-Quinone Ether to a Spiroacetal. Org. Lett. 2018, 20, 3928–3932. DOI: 10.1021/acs.orglett.8b01475

                               記事協力:Chem-Station