LINE公式アカウントから最新記事の情報を受け取ろう!
CONTENTS
現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、高機能化に向けた微細化・集積化が進んでいる。中でも、半導体の表面に微細な電子回路を形成した集積回路では、回路上に搭載するトランジスタの数が増えるほど計算能力の向上が見込める。集積回路の微細化は、集積回路当たりのトランジスタの数が毎年2倍になるというムーアの法則[1]に従って発展してきた。しかし、三次元半導体のSiを使用したトランジスタを今以上に小さくすることは限界を迎えつつある。その原因は、Siを微細化しすぎることで界面が不安定になり、物性が消失するためである。その問題の突破口となる新たな材料の候補として、二次元材料が挙げられる。
代表的な二次元材料にグラフェンがあげられる。これは、炭素原子のみで構成された二次元物質である。グラフェンはπ軌道とπ*軌道が互いに重なっておらず、価電子帯の上端と伝導帯の下端が6つの点(Dirac point)でのみ接触したDirac cone構造という特殊なバンド構造を持つ(図1)。このため、グラフェンはゼロギャップ半導体とも呼ばれ、種々の興味深い性質を示すが、一方でグラフェンはそのままでは二次元半導体として用いることはできず、ドーピングやイオン注入などで欠陥を作製する必要がある。また、作成時のコストが非常に大きいという問題がある。
図1 グラフェンのフェルミ面[2]
グラフェンに替わる二次元物質として、遷移金属ダイカルコゲナイド(Transition Metal Dichalcogenide, TMDC)に注目が集まっている。この物質は一層の遷移金属層をカルコゲン原子層がサンドイッチした構造をとっている。TMDCの一種であるMoSe2の単層構造を図2に示す。
図2 単層MoSe2の結晶構造
TMDCの物性は様々で、組成や結晶構造によって金属、半金属、半導体、絶縁体など多岐にわたる。TMDCの特徴的な点として層数によって物性が変化する層数依存性がある。TMDCの一種であるMoS2やMoSe2では、単層になると電子遷移が間接遷移から直接遷移に変化する(図3)。
図3 MoS2のバンドギャップの遷移[3]
TMDCを構成する遷移金属は強いスピン軌道相互作用を持っている。また、図2のようなハニカム構造を持つTMDCでは、バンド端で2つのエネルギーバンドが縮退している。このバンドは谷(Valley) 型の構造をとるため、この構造をバレーと呼び、この縮退をバレー縮退と呼ぶ。それぞれのバレーには異なる運動量を持った電子が入り、強いスピン軌道相互作用の影響により左右の円偏光で選択的に励起することができる(図4)。このことから、バレーは新たな量子自由度として用いることができる。この自由度はバレー自由度と呼ばれ、バレー自由度を用いて情報処理を行うエレクトロニクスをバレートロニクスと呼ぶ。現代の量子ビットは極低温下での利用が一般的であり、巨大な冷却装置を必要とする点が問題であったが、TMDCのバレー自由度を利用することで、室温かつ小型な量子コンピュータの開発が見込まれる。
図4 MoS2のバレー構造[4]