シナプス長期増強の通説を見直す(8月30日 Nature オンライン掲載論文)

2023.09.13

繰り返し刺激を受けたシナプスの伝達性が持続的に高まる長期増強(long term potentiation:LTP)は、学習の細胞的基盤とも考えられる神経生物学の重要な概念の一つだ。この長期的シナプスの伝達性変化は、カルシウムの流入により活性化されるカルモジュリンキナーゼ (CAMKII) が関わっていることが指摘されていた。

 

すなわち、神経興奮によるカルシウム流入は、CAMKII を活性化を誘導、活性化された CAMKII はシナプスでグルタミン酸受容体(GluR)と結合し、GluR やそれと結合している分子をリン酸化し、これによりシナプス伝達性が高まると説明されていた。事実、CAMKII の ATP 結合部位の変異によるリン酸化活性の消失は LTP 消失につながることも示され、この考えは通説になっていた。

 

今日紹介するコロラド大学からの論文は、CAMKII は LTP に必須だが、リン酸化活性ではなく、CAMKII の構造変化により GluR と持続的に結合することがシナプス伝達性を高めるという、通説の見直しを迫る研究で、8月30日 Nature にオンライン掲載された。

 

タイトルは「LTP induction by structural rather than enzymatic functions of CaMKII(LTPは CaMKII の酵素活性より構造変化により誘導される)」だ。

 

通説では LTP には CaMKII のリン酸化活性と、それに続く GluR への結合が重要であると考えられていた。この研究では、シナプス刺激によるカルシウム流入なしに、光で抑制ドメインを解除することで、ATP 結合部位と、GluR への結合部位が同時に開く人工 CaMKII (m CaMKII) を用いることで、CaMKII の酵素活性と、GluR 結合活性をそれぞれ分離して LTP への作用を調べている。

 

この mCaMKII を発現したシナプスでは、光を当てると刺激なしに LTP を誘導できる。次に、この分子の GluR 結合部位に変異を、ATP 結合ドメインへの変異を別々に導入して LTP への影響を調べると、GluR 結合部位変異では CaMKII リン酸化活性は維持されるのに、LTP 誘導ができなくなる一方、ATP 結合が消失する変異では、リン酸化活性は消失しても、LTP 誘導は正常に行われることを発見する。すなわち、LTP に CaMKII のリン酸化活性が必要だとする通説が否定された。

 

この発見がこの研究のハイライトで、あとはこの発見をいくつかの方法で再検証している。中でも面白いのが、CaMKII のキナーゼ活性阻害剤 AS283 を用いた研究だ。LTP にリン酸か活性が必要ないことは、AS283 を用いた阻害実験からも確かめられるが、驚くのは ATP 結合部位に変異を導入した CaMKII に AS283 を作用させると、変異で失われていた LTP 誘導能が回復する点だ。

 

すなわち、CaMKII のキナーゼ活性より、ATP 結合により CaMKII 構造が変化し、GluR に結合することが LTP を誘導することが明らかになった。

 

最後にこの結果を元に、変異型 CaMKII を誘導したマウス海馬を、AS283 を用いて CaMKII の構造変化を誘導することで、LTP を誘導する実験を示して、新しい LT P誘導実験システムが可能であることを示している。

著者紹介:西川 伸一

京都大学名誉教授。医学博士であり、熊本大学教授、京都大学教授、理化学研究所発生・再生科学総合研究センター副センター長などを歴任した生命科学分野の第一人者である。現在はNPO法人オール・アバウト・サイエンス・ジャパン (AASJ) 代表理事を務めながら、1日1報、最新の専門論文を紹介する「論文ウォッチ」を連載している。

【主な活動場所】 AASJ(オールアバウトサイエンスジャパン)
オールアバウトサイエンスジャパンは医学・医療を中心に科学を考えるNPO法人です。医師であり再生科学総合研究センター副センター長などを歴任された幹細胞や再生医療に関する教育研究の第一人者である西川伸一先生が代表理事を務められております。日々最新の論文を独自の視点でレビュー、発信されておりますのでご興味のある方はぜひお問い合わせください。

このライターの記事一覧